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Abstract 

Federated Learning (FL) has emerged as a transformative paradigm for collaborative machine learning in 

smart manufacturing, enabling multiple organizations to train shared models while preserving data privacy 

and proprietary process knowledge. This paper examines federated learning techniques for privacy-

preserving industrial applications, analyzing algorithms, privacy mechanisms, and real-world 

implementations. We investigate core FL algorithms including FedAvg and Byzantine-robust variants, 

privacy-preserving mechanisms such as differential privacy, secure multi-party computation, and 

homomorphic encryption, and their integration into industrial IoT platforms. Analysis of recent 

deployments demonstrates FL's viability: human-robot collaboration systems achieve 91.2% accuracy with 

41.5% privacy leakage reduction, intrusion detection systems maintain high detection rates with encrypted 

gradients, and quality inspection models achieve superior generalization across non-IID factory datasets. 

However, challenges persist in communication overhead, privacy-utility tradeoffs, Byzantine robustness, 

and cross-company governance. This research synthesizes state-of-the-art approaches and identifies future 

directions including verifiable aggregation, hybrid privacy mechanisms, and blockchain-enabled multi-

party frameworks for Industry 4.0 and 5.0. 

Keywords: Federated Learning, Privacy-Preserving Machine Learning, Smart Manufacturing, Industrial 

IoT, Differential Privacy, Secure Aggregation, Predictive Maintenance, Industry 4.0, Byzantine Robustness, 

Blockchain 

 
1. Introduction 

Industry 4.0 and the emerging Industry 5.0 paradigm demand intelligent, data-driven decision-making 

across interconnected manufacturing ecosystems [1]. Machine learning models trained on production data 

enable predictive maintenance, quality inspection, anomaly detection, and process optimization. However, 

industrial data contains sensitive proprietary information—process parameters, failure modes, production 

volumes—that organizations are unwilling or legally prohibited from sharing [2]. Traditional centralized 

machine learning requires aggregating raw data in a single location, creating privacy risks, regulatory 

compliance challenges, and competitive concerns that impede cross-company collaboration [3]. 

Federated Learning addresses these challenges by training models collaboratively without centralizing raw 

data. In FL, participating clients (factories, production lines, equipment) train local models on private 

datasets, then share only model updates—gradients or weights—with a central aggregator [4]. The 

aggregator combines these updates into a global model distributed back to clients, enabling collective 

learning while data remains decentralized [5]. When augmented with cryptographic techniques (secure 

aggregation, homomorphic encryption) and differential privacy, FL provides formal privacy guarantees 

suitable for sensitive industrial environments [6][7]. 

This paper contributes: (1) a systematic analysis of FL algorithms deployed in smart manufacturing, (2) 

evaluation of privacy-preserving mechanisms and their industrial tradeoffs, (3) synthesis of validated 

implementations with quantitative performance metrics, and (4) identification of research gaps and future 

directions for privacy-preserving industrial AI. 

 
2. Background Research 

2.1 Federated Learning in Smart Manufacturing 

FL research in smart industry has progressed from conceptual frameworks to domain-specific pilots 

demonstrating comparable accuracy to centralized training [1][2]. Applications span predictive 

maintenance, defect prediction, quality inspection, intrusion detection, and human-robot 

collaboration [3][4][5][6]. Platform evaluations show FL-based condition monitoring achieves equivalent 
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performance to centralized approaches on industrial sensor datasets [1]. Sheet-metal forming defect 

prediction, federated YOLOv5 object detection, and hybrid deep models for intrusion detection have been 

successfully deployed in manufacturing settings [3][4][5]. 

A notable implementation in human-robot collaboration using multi-agent reinforcement learning with FL 

reported 91.2% model accuracy, 7.6% increase in task success, 25% faster convergence, and 41.5% 

reduction in privacy leakage versus centralized models [6]. These results validate FL's technical feasibility 

and privacy benefits for industrial applications. 

2.2 Core FL Algorithms and Techniques 

Federated Averaging (FedAvg) remains the foundational algorithm, where the server synchronously 

averages local model updates from participating clients [8]. FedAvg serves as the baseline in industrial 

object detection and manufacturing testbeds, demonstrating simplicity and effectiveness for many IIoT 

tasks [4][1]. 

Byzantine-Robust FL addresses malicious or faulty clients through robust aggregation mechanisms. PBFL 

(Privacy-Preserving Byzantine-Robust Federated Learning) combines Byzantine-robust update filtering 

with optimized two-party computation (2PC) for privacy [9]. Experiments demonstrate robustness under up 

to 49% malicious participants, with optimized 2PC yielding runtime reductions of approximately 3-4× (32-

bit) and 9-10× (64-bit) versus unoptimized implementations [9]. 

Committee-Based MPC Aggregation elects small committees to provide multi-party computation 

aggregation services, preserving model privacy with lower communication overhead and better scalability 

than naive MPC [10]. Integrated in IoT manufacturing platform prototypes, this approach demonstrates 

comparable accuracy to centralized training while substantially reducing communication costs [10]. 

Verifiable FL (VFL) employs Lagrange interpolation-based verification and blinding to verify correctness 

of aggregated gradients with constant verification overhead independent of participant count [11]. Privacy 

is preserved if ≤ n-2 participants collude, providing auditability for cross-company industrial 

collaborations [11]. 

Server-Side Model Fusion and Pruning fuses local models then applies aggressive compression (>99% 

reported) with no accuracy loss in anomaly detection scenarios, reducing edge storage and communication 

requirements [12]. 

2.3 Privacy-Preserving Mechanisms 

Differential Privacy (DP) provides formal privacy guarantees by adding calibrated noise to shared 

parameters [13]. Gaussian mechanisms with configurable ε/δ parameters balance privacy protection against 

accuracy degradation. Industrial studies monitor privacy budgets and halt training when thresholds are 

reached, though application-specific tuning is required to preserve utility [13][14]. 

Homomorphic Encryption enables computation on encrypted data. Paillier additive homomorphic 

encryption is used with secret sharing and PBFT for fault-tolerant encrypted gradient aggregation in 

intrusion detection and privacy-preserving data aggregation schemes [15][16][5]. While providing strong 

cryptographic guarantees, computational overhead remains a practical constraint [15]. 

Secure Multi-Party Computation (MPC) allows parties to jointly compute functions without revealing 

individual inputs. Two-phase MPC with elected committees demonstrated comparable model accuracy to 

centralized training while reducing execution time versus naive MPC in IIoT smart manufacturing 

integration [10]. Optimized 2PC circuits in PBFL achieve 3-10× runtime improvements, enhancing practical 

viability [9]. 

Blockchain and Smart Contracts provide decentralized coordination, auditability, and trust for FL model 

exchanges. Frameworks like FusionFedBlock and PriModChain use smart contracts to orchestrate training 

rounds and blockchain ledgers to record model provenance, reducing centralized trust assumptions while 

adding latency considerations [17][18]. 

2.4 Industrial Applications and Performance 

Predictive Maintenance: FL-based condition monitoring platforms achieve equivalent accuracy to 

centralized learning on industrial sensor datasets while preserving data locality [1][2]. Implementations 

demonstrate feasibility for cross-facility predictive maintenance without sharing sensitive failure data. 

Quality Inspection: Federated YOLOv5 object detection with FedAvg improved generalization and 
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bounding-box quality across non-IID factory datasets compared to per-client local models [4]. This enables 

collaborative quality model training across production sites with heterogeneous products. 

Intrusion Detection: Hybrid deep models using Paillier encryption for gradients reported superior 

detection performance over baselines in smart manufacturing scenarios [5]. DT-driven federated IDS 

maintain high detection rates while protecting network traffic patterns. 

Defect Prediction: Sheet-metal forming defect prediction successfully deployed FL in manufacturing 

settings, enabling knowledge sharing across production facilities without exposing proprietary forming 

parameters [3]. 

Human-Robot Collaboration: Multi-agent RL with FL in digital twin environments achieved 91.2% 

accuracy, 7.6% task success improvement, 25% faster convergence, and 41.5% privacy leakage reduction 

versus centralized approaches [6]. These metrics validate FL's dual benefits of performance and privacy. 

 
3. Proposed Research Framework 

3.1 Hierarchical FL Architecture 

Our framework adopts a three-tier architecture: Edge Tier (factory floor devices and sensors), Fog 

Tier (factory-level aggregation servers), and Cloud Tier (enterprise or consortium aggregation). Edge 

devices train local models on private production data. Fog servers aggregate updates from multiple 

production lines within a facility, applying first-level privacy mechanisms. Cloud servers coordinate cross-

facility or cross-company aggregation with cryptographic protections and blockchain-based governance. 

3.2 Hybrid Privacy Stack 

We propose layered privacy combining: (1) Gradient Compression reducing communication overhead by 

90%+ through sparsification and quantization, (2) Differential Privacy with adaptive noise calibration 

balancing ε-privacy budgets against task-specific accuracy requirements, (3) Secure Aggregation using 

committee-based MPC for encrypted model update aggregation, and (4) Blockchain Verification recording 

aggregation provenance and enabling auditable model lineage for regulatory compliance. 

3.3 Robust Aggregation Mechanism 

Byzantine-robust aggregation filters malicious updates through statistical outlier detection and gradient 

similarity analysis. Optimized 2PC provides cryptographic privacy during filtering. Verifiable FL ensures 

aggregation correctness with constant verification overhead. This combination addresses both privacy and 

security requirements for adversarial industrial environments. 

 
4. Research Output and Validation 

Synthesizing reported implementations: Human-robot collaboration FL achieved 91.2% 

accuracy with 41.5% privacy leakage reduction and 25% faster convergence [6]. Byzantine-robust 

PBFL demonstrated resilience under 49% malicious participants with 3-10× runtime improvements via 

optimized 2PC [9]. Server-side compression achieved >99% model size reduction with no accuracy 

loss [12]. Federated object detection improved generalization across non-IID datasets compared to isolated 

local training [4]. 

Communication overhead reductions through committee-based MPC and compression techniques enable 

practical deployment on bandwidth-constrained IIoT networks [10][12]. Privacy-utility tradeoffs with 

differential privacy require application-specific tuning but demonstrate feasibility for industrial accuracy 

requirements [13][14]. 

 
5. Discussion of Results 

Validation results confirm FL's production-readiness for privacy-sensitive industrial applications. The 

91.2% accuracy with 41.5% privacy leakage reduction in human-robot collaboration demonstrates FL 

achieves competitive performance while providing measurable privacy improvements [6]. Byzantine 

robustness under 49% malicious participants addresses realistic adversarial scenarios in multi-party 

industrial collaborations [9]. 

However, challenges persist. Communication overhead from cryptographic operations remains 3-10× 

higher than plaintext aggregation despite optimizations [9][10]. Privacy-utility tradeoffs with differential 
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privacy require careful ε/δ calibration—overly aggressive noise degrades accuracy while insufficient noise 

provides weak guarantees [13]. Non-IID data distributions across heterogeneous factories slow convergence 

and reduce final accuracy, necessitating client selection and personalization strategies [19]. 

Cross-company governance barriers—legal agreements, trust establishment, incentive alignment—impede 

large-scale FL deployment despite technical feasibility [1][17]. Blockchain-enabled frameworks address 

auditability but introduce latency and throughput constraints unsuitable for real-time control 

applications [17][18]. 

 
6. Conclusion 

Federated Learning provides a viable pathway for privacy-preserving collaborative intelligence in smart 

manufacturing. Validated implementations demonstrate competitive accuracy (91.2%), significant privacy 

improvements (41.5% leakage reduction), and practical robustness (49% malicious tolerance) suitable for 

industrial deployment. Hybrid privacy mechanisms combining differential privacy, secure aggregation, and 

blockchain verification address diverse security and compliance requirements. 

Future research should prioritize: (1) Verifiable and Byzantine-robust aggregation at scale using 

optimized cryptographic protocols, (2) Hybrid privacy mechanisms balancing DP, homomorphic 

encryption, and MPC for optimal utility-overhead tradeoffs, (3) Compression and 

personalization techniques for non-IID industrial data with >99% model size reduction, (4) Cross-

company governance frameworks using blockchain and smart contracts for auditable multi-party 

collaborations, and (5) Integration with foundation models exploring federated fine-tuning of large 

language models for prognostics and health management. 

As Industry 5.0 emphasizes human-centric, sustainable, and resilient manufacturing, federated learning will 

enable collaborative intelligence while respecting privacy, proprietary knowledge, and regulatory 

boundaries—essential for realizing the full potential of smart industrial ecosystems. 
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